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The influence of finite ion Larmor radius and equilibrium

self—electric fields on the ion resonance instability

in a nonneutral plasma column is examined, and a closed

algebraic dispersion relation f o r  the complex eigenfrequency w

is obtained. It is shown that finite ion Larmor radius

effects can have a strong stabilizing influence for azimuthal

Fl mode numbers 2>2, particularly when the equilibrium self—

electric field is sufficiently weak.
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I. INTRODUCTION 2

One of the most basic instabilities that characterizes a nonneutral

plasma1 with both ion and electron components is the ion resonance

instability.25 In cylindrical geometry, the ion resonance instability

can be described as a two—rotating—stream instability2 in which the

relative rotation between electrons and ions is produced by the

equilibrium self—electric field 
~~~~~~ 

Previous analyses of this

instability have been based on macroscopic cold—fluid models2 4

in which the ion and electron motion is assumed to be laminar. In

this paper, we investigate the influence of finite ion Larmor radius

-f and equilibrium self—electric field effects on the ion resonance

instability in a nonneutral plasma column with rectangular electron

and ion density profiles. The analysis is carried out within the

framework of a hybrid Vlasov—fluid model. The electrons are described

as a macroscopic, cold (Te•+O) fluid immersed in a uniform axial

magnetic field 
~~~~ 

On the other hand, to allow for the possibility

of large ion orbits with thermal Larmor radius comparable to the

radius of the plasma column , we adopt a fully kinetic model for the

ions in which the ions are described by the Vlasov equation. An

important conclusion of the present analysis is that the growth rate

• of the ion resonance instability exhibits a very sensitive dependence

Ofl rLj/R, Wpe/W~e 
and f. (Here 

~Li 
is the characteristic thermal ion

Larmor radius, R~ is the radius of the plasma column, is the

electron plasma frequency, Wce is the electron cyclotron frequency
,

and 
~~~~~~ 

is the fractional charge neutralization provided by the

positive ions.)

For azimuthally symmetric electron equilibria (a/~e—O and 31az 0)

characterized by electron density n~(r) and mean velocity

equilibrium force balance on an electron fluid element in the radial

direction can be expressed as ..m5V~~
(r)/r1’i_~E~

(r)_eV
~0(r)B0/c, 

or
- -~~~~~~~~~~~~~~~~~~~~~~~ 
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equivalently 
~~~~~~~~~~~~~~ 

where wCe•t5BO/mec~ 
we(X~~ 9(.r)/r, and WE(r)

is the angular ~°x~~ frequency defined by wf_cEr/rBO. For purposes

of analytic simplification in the stability analysis, we specialize

to the case of a sharp—boundary equilibrium in which the electrons

have a rectangular density profile, i.e.,

(n const. , 0.cr<R
n°(r) —~~~ ° p (1)

C (0  ~ Rp<r<Rc

where r
~
R
~ 
is the radial location of a grounded conducting wall.

For the ion equilibrium, we make the particular choice of distribution

function f~ that also gives a rectangular density profile, i.e.,

f~_ (fnOmjf21~)o(H~
_w
iPe

_*rj)G(Vz) , 
(2)

where ~~ f , and Ti are constants, H~—ni~(v~+v~) I2+e$0 (r) is the

perpendicular energy, P9~
mi(rv9+r2w

~i
/2) is the canonical angular

-
• 

momentum, and C(v
~
) Is the parallel velocity distribution

- 
• 

- 
with normalization J dv~G(v~) — 1. After some simple

6algebraic manipulations, it is straightforward to show that

the electron and ion density profiles precisely overlap with a co on

radius R~ provided ~r~—m~c2
2R~/2. where m~ is ion mass, 

~~~~~~~~~~~~~~~~~

and 
~~j

—eB0/mic. In the case of a sharp—boundary equilibrium, the

• ~~°X~~~~ rotation frequency can be expressed as wE
1112rrnOec(

l_f)/B
O.
6

• II. ELECTROSTATIC STABILITY PROPERTIES

In the stability analysis, flute perturbations with ~/az—0 are

considered. For perturbations with azimuthal harmonic number £ ,

a perturbed quantity t5*(,~ ,t)  can be expressed as 6*(~,t)”i~ 
(r)exp{i(L$ wt)},

where w is the complex eigenfrequency. In the electrostatic approxima—

tion with 6~(~,t)u.—Zo$(~5,t), the linearized Vlasov—fluid and 
Poisson P

equations can be expressed as6

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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(3/3 r) (r2we) er
l
~~~

’me) ~~ /r)~ (r)

_ i(W _Lwe)fle+( l/r ) (3 /3 r) 
~~er ’~~~ 

/r )n
~
V
~~ 

—0 , (3)

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,

[(l/r) (3 13r)(r3 13r) t2/r 2]6 (r) 11_4h1e(J d3Vf f.fle)

where the perturbation amplitudes V r~ 
‘VeO~ ~e 

and refer to radial

velocity, azimuthal velocity, electron density, and ion distribution

function, respectively. Making use of Eqs. (1) and (3), and 3n°(r)/3r”

we obtain the eigenvalue equation

• [r (l +~~~~)~~~
6(r)) 

_
~~~~(l+~ 4!)3(r)

— 
L~ (r) W ce

_
~~ e ~~~ 

~ (r-R 4r u—Lw 2 pe v e

2 

— 
87r 2e2 

I 
dV.LV.LI dv 

~~~~~ 
[ (r)+(w_Lw i)U

where ve(r)~
(w ce

_2w
e) 

_(w
~2*We) const., pe~~~~~~O 

/m5—const., for

• 0crcR , and-w
2 (r)—O otherwise, and orbit integral I is defined in

Eq. (5) .

It is evident that the perturbed electron contribution to the

right—hand side of Eq. (4) [the term proportional to 6(r_R~) in Eq.

(4)] is equal to zero except at the surface of the plasma column

(r~R~). Moreover, it can be shown that Eq. (4) supports a class of

solutions in which the perturbed ion density (the term proportional

to Id v V~ 3f1/aV.L... in Eq. (4)] is also equal to zero except at

r R ~. It then follows from the linearized Poisson equation (4)

that the electrostatic potential ~(r) has the simple form 3(r).1Ar~
L

-- ~~~
•

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— -

________ • -•~~~ -— -• --,••~~-— ~~
. 

•- - - —.——-- ~ - -~~---— - ----- ~~~~~~~~---  - -— - ~-•~~~~ -~~~-~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~. ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~• —



V

• 1~~ 

S

inside the plasma column (O*cr<R~)1 where A is a cc~stant. 
Making

use of the ion trajectories in equilibrium fields, it is readily

• shown that the required orbit integral can be expressed as
6

0
i_i(3(r)I (4_~j)

t] J drexp(—iwr) E(wi
_w )exp(iw

~
t)

(5)

+ - 9.
_ (w

1
_w~ )exp(iwj*r)]

where 4__wcj(l±(1+4wE/wcj)
1*
~
/2

1/2• An important feature of Eq. (5)

is that the orbit integral ~ is independent of 
perpendicular energy

• m1V~ /2.  This is a consequence of the particularly simple form of

~(r) within the plas
ma column. The right—hand side of Eq. (4) is equal to

zero except at the surface of the plasma column (ru1R~). Moreover, the eigen-

function +(r) satisfies the vac~ium Poisson equation, r~~
(3/~r)[r3~ / 3r) —

excep t at r R ~. Therefore, the solution to Eq. (4)

can be expressed as (r)—Ar t for Ocr<R~ and ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

for R <rcR . Note that •(r) is continuous at r R  *

p — c  p

The dispersion relation that determines the complex eigenfrequeitcy

w is obtained by multiplying Eq. (4) by r and integrating from R~(l~-c)

to R~(l+t) with c-
~
O+. This gives

-2 - 2 2
U) U) B

1 PC - +  P i P r (w) ,
l_ (R

~
/R
~
)22 2(w_Lw

e
)((w_L4

~~
)(W ce

_2W
e)J 2t~~ (6)

• where E2!~j/mj1.~~jw~j, ~
2

~~E4 1Tfn
0
e

2 /m~~1 ~ e~
41rn0e2/me. wce~~8O~’mec~ 

and

r~(~)--l+ (:~ J0 m!(L-m) ! ~~~~~~~~~~~~ 
(7)
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A striking feature of the present analysis is the fact that the required orbit

integral I (Eq. (5)] can be evaluated in closed form [Eq. (7)] for general

values of the parameters rLi/Rp and (2 i
~~e/ W~e) ( l _f )

~ 
Moreover, the resulting

eigenvalue equation (4) for the perturbed electrostatic potential •(r) can be

solved exactly to give a closed algebraic dispersion relation (Eq. (6)]

for the complex eigenfrequency w. As expected, in the limit where

rLi /RP
4PO , Eq. (6) reduces to the familiar cold—fluid dispersion relation

2,3
previously discussed in the literature.

- 
Equation (4) has been solved nurnerically for the complex eigen—

6
frequency w—wr+i-~ for a wide variety of plasma parameters. For

present purposes , we assume that the electron fluid is rotating in the

slow equilibrium mode1 with we
_ 

ce
(l_ 4~E/w ce

) h/2 h / 2~ while the mean

equilibrium motion of an ion fluid element correspond s to the slow rotation

velocity defined by Wi
11_W

ci [l_(i+ 4WE/W cj _4r~j /R~) hhl2 ]/2 . The present

analysis is restricted to nonneutral proton—electron plasmas (mj/m~~
l83ó),

and the growth rate and real frequency are measured in units of

the lower—hybrid frequency, w ~(w w )~~‘2~ Moreover , we assumeLii cc ci

that R~/R~~O. 5. Stability boundaries in the parameter space U,

are illustrated in Figs . 1 and 2. In Fig . 1, the solid curves correspond

to the stability boundaries (y—O) obtained from Eq. (6)  for

and several values of azimuthal harmonic number 9.. For a given

value of 9., the region of ‘~~e”~~e~ 
parameter space above the curve

corresponds to instability (y>O) , whereas the region of parameter

space below the curve corresponds to stability (~“O) . In the forbidden zone

in Fig. 1, equilibrium is not allowed since the magnetic restoring

force on an electron fluid element is weaker than the repulsive space—

charge force (2(
~~e

(1_f)>w
~e]*

- •_ •_ ,_ __ ________.__._._,s.*_._
~ - ‘~~-~~_______ - - - 
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In Ti8. 2, the stability boundaries are illustrated for rLi/R
P
.l.

Evidently, for such large value of rLj/R
P~ 

the region of

parameter space corresponding to allowed equilibria becomes

increasingly limited by the equilibrium constraint6 that the pressure

gradient force on an ion fluid element be weaker than the confining

electric and magnetic forces (see the uppermost forbidden zone ~n

Fig. 2).

The dependence of stability properties on fractional charge

neutralization f is illustrated in Fig. 3, where the normalized

growth rate y/w~~ is plotted versus f for ~~~~~~~~~~~ 
(Figs. 3(a)

and 3(b)] and 
~~e

/
~~e

05 (Fig. 3(c)], and several values of mode

number 9.. We also assume rLi/R
P
_O in Fig. 3(a), and rL~

/R
P
O.S in

Figs. 3(b) and 3(c). Several features are noteworthy in Fig . 3.

First, the number of unstable modes increases rapidly as f iS

increased. Second, for L>2 , the instability growth rate is significantly

reduced by finite ion Larmor radius effects, particularly when the

• equilibrium self electric field is sufficiently weak. (For example,

compare Figs . 3(a) and 3(b) with f approaching unity]. Third, the

instability growth rate increases substantially with increasing plasma

density [Figs . 3(a) and 3(b)] .

III. SUMMARY AND CONCLUSIONS

Several important conclusions follow from the present analysis.

For example, the growth rate of the ion resonance instability exhibits

a very sensitive dependenc e on 
~ti /R , 

~~~~~~~ 
and f .  Moreover,

finite ion Larmor radius effects can have a strong stabilizing

influence for mode numbers &,2 [see , for example , Figs . 3(a) and

3(b) ] ,  particularly when the equilibrium self—electric field is weak

or f close to unity). For the fundamental mode (t 1),

however, stability properties are identical to those calculated

- - -. - - - -• —-  ___1~ 
- -—-•— -

~~~~~ 

—--—

~~t — — —— 
— — — — —
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L I f rom a macroscopic ~~~—f 1uid model , and the growth rate is unaffected

by the value of 
~Lj

/Rp. The detailed dependence of normalized

real frequency 
~r
1’
~LH °~‘ ‘

~Li’~
’
~p’ 

‘~e~
’
~~e 

and f will be given elsewhere.6
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FIGURE CAPTIONS

Fig. 1 Stability boundaries [Eq. (6) ] in the parameter space

: 
‘~~ e”~~ e~ 

for mj /m~u’1l836, R~/R~~
O. S

~ ~~~~~~~~ 
and

several values of 9..

Fig. 2 Stability boundaries (Eq. (6)] in the parameter space

for mj/me l836, R
~

/R
~
”.0.5

~ 
rLi/R

P
I.1.O

~ 
and

several values of 9..

• Fig . 3 Plots of y/w~~ versus f (Eq. (6) ] for mj/lneul836, 
~~~~~~~~~
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